博客
关于我
python 生成器
阅读量:131 次
发布时间:2019-02-27

本文共 748 字,大约阅读时间需要 2 分钟。

生成器是一种特殊的函数,它使用yield语句来产生值。在编程中,生成器非常有用,因为它们能在不影响主程序执行的同时,逐次生成大量数据。

让我们来看一个例子。以下是一个生成斐波那契数列的生成器函数:

def fibonacci(n):    a, b, counter = 0, 1, 0    while True:        if counter > n:            return        yield a        a, b = b, a + b        counter += 1

当我们调用这个函数并传入一个参数时,它会返回一个迭代器。例如:

f = fibonacci(10)

接下来,我们可以使用next()函数来逐步获取生成器的值。每次调用next(),生成器会执行到yield语句,然后暂停并返回当前的值。下一次调用时,它会从暂停的位置继续执行。

if __name__ == '__main__':    while True:        try:            print(next(f), end=" ")        except StopIteration:            break

生成器有两个主要特点:

  • 直接调用生成器函数会返回一个迭代器。这意味着生成器在第一次使用时会执行到第一个yield语句,并将初始值返回。

  • 使用next()函数可以控制生成器的执行。当执行到yield语句时,生成器会将当前的执行状态保存,然后返回yield的值。下次调用next()时,生成器会从保存的状态继续执行。

  • 生成器的这种设计模式在处理大型数据或资源密集型任务时特别有用,因为它可以在需要时逐次生成数据,而不会一次性占用过多内存。

    转载地址:http://ibkb.baihongyu.com/

    你可能感兴趣的文章
    NT AUTHORITY\NETWORK SERVICE 权限问题
    查看>>
    NT symbols are incorrect, please fix symbols
    查看>>
    ntelliJ IDEA 报错:找不到包或者找不到符号
    查看>>
    NTFS文件权限管理实战
    查看>>
    ntko web firefox跨浏览器插件_深度比较:2019年6个最好的跨浏览器测试工具
    查看>>
    ntko文件存取错误_苹果推送 macOS 10.15.4:iCloud 云盘文件夹共享终于来了
    查看>>
    ntp server 用法小结
    查看>>
    ntpdate 通过外网同步时间
    查看>>
    ntpdate同步配置文件调整详解
    查看>>
    NTPD使用/etc/ntp.conf配置时钟同步详解
    查看>>
    NTP及Chrony时间同步服务设置
    查看>>
    NTP服务器
    查看>>
    NTP配置
    查看>>
    NUC1077 Humble Numbers【数学计算+打表】
    查看>>
    NuGet Gallery 开源项目快速入门指南
    查看>>
    NuGet(微软.NET开发平台的软件包管理工具)在VisualStudio中的安装的使用
    查看>>
    nuget.org 无法加载源 https://api.nuget.org/v3/index.json 的服务索引
    查看>>
    Nuget~管理自己的包包
    查看>>
    NuGet学习笔记001---了解使用NuGet给net快速获取引用
    查看>>
    nullnullHuge Pages
    查看>>